Fuzzy Logic for Elimination of Redundant Information of Microarray Data
نویسندگان
چکیده
Gene subset selection is essential for classification and analysis of microarray data. However, gene selection is known to be a very difficult task since gene expression data not only have high dimensionalities, but also contain redundant information and noises. To cope with these difficulties, this paper introduces a fuzzy logic based pre-processing approach composed of two main steps. First, we use fuzzy inference rules to transform the gene expression levels of a given dataset into fuzzy values. Then we apply a similarity relation to these fuzzy values to define fuzzy equivalence groups, each group containing strongly similar genes. Dimension reduction is achieved by considering for each group of similar genes a single representative based on mutual information. To assess the usefulness of this approach, extensive experimentations were carried out on three well-known public datasets with a combined classification model using three statistic filters and three classifiers.
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملDiagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets
With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...
متن کاملMicroarray Gene Expression Analysis Using Type 2 Fuzzy Logic (mga-fl)
Data mining is defined as the process of extracting or mining knowledge from vast and large database. Data mining is an interdisciplinary field that brings together techniques from machine learning, pattern recognition, statistics, databases, and visualization to address the issue of information extraction from large databases. Bioinformatics is defined as the science of organizing and analyzin...
متن کاملA Clustering Based Feature Subset Selection Algorithm for High-Dimensional Microarray Data Using Fuzzy Entropy with Neuro-Fuzzy Classifier
Feature selection involves the process of selecting a subset of relevant features that produces the result as the original set of features. The central assumption of using a feature selection technique in high dimensional data is that the data may contain many redundant or irrelevant features. Microarray dataset may also contain a huge number of redundant (insignificant) and irrelevant features...
متن کاملAn Introduction to the Use of Fuzzy Mathematics in Archeology (Case Study: Virtual Reconstruction of Togrul Tower by Using Fuzzy Reliability)
Nowadays, the use of fuzzy mathematics and fuzzy logic are increasing in various sciences. Archaeology is one of the sciences that is less attended with the methods of fuzzy mathematics and fuzzy logic. Due to the nature of many archaeological data, however, the use of such methods in archaeology can be beneficial. In this research, it has been tried to explain applications of fuzzy logic and f...
متن کامل